

Nuclear Fuel Cycle Resources, Mining, Milling

SYE 4503 Mahmoud R. Ghavi, Ph.D.

Abundance of select elements

Element	Abundance (g/ton)
Gold	0.004
Silver	0.07
Tungsten	1.5
Molybdenum	1.5
Uranium	1.8
Thorium	7
Lead	13
Copper	55
Zinc	70
Iron	50,000
Aluminum	81,300

CRUSTAL ABUNDANCE OF SELECTED ELEMENTS*

: B. Mason, Principles of Geochemistry, 3rd ed., John Wiley & Sons, New York (1966).

<u>S</u>PSU

Uranium deposits

Uranium is a fairly common metal in rocks and seawater at various concentrations:

Very high-grade ore (Canada) - 20%

High-grade ore - 2% U,

Low-grade ore - 0.1% U,

Very low-grade ore* (Namibia) - 0.01% U

Granite

Sedimentary rock

Earth's continental crust (av)

Seawater

200,000 ppm U

20,000 ppm U

1,000 ppm U

100 ppm U

3-5 ppm U

2-3 ppm U

2.8 ppm U

0.003 ppm U

- Seawater:
 - Small concentration of 0.003ppm and 1ppm in marine mud
 - Total deposits of 4,000 Mt
 - Not economical at low uranium prices
- Other sources:
 - Phosphate byproduct (in mid 90's about 20% of US uranium came from Florida phosphate deposits as a byproduct
 - Coal and Lignite (1-10 ppm)
 - Copper mining byproducts (2-20 ppm)

Uranium World Reserves


SPSU

Known recoverable Uranium Resources as of 2011 at \$130/Kg Uranium. At \$260/Kg the reserves exceed 7,000,000 tons. Current use is about 68,000 tons/year. Latest estimates (2012) predict 100 year supply (NEA/IAEA).

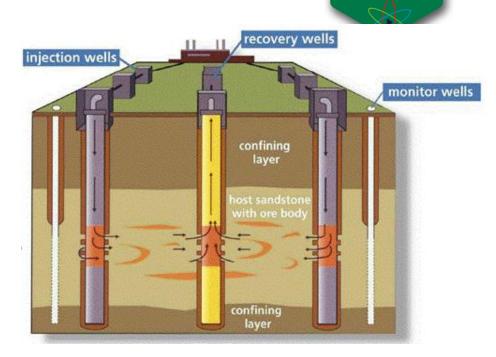
	tons U	percentage of world
Australia	1,661,000	31%
Kazakhstan	629,000	12%
Russia	487,200	9%
Canada	468,700	9%
Niger	421,000	8%
South Africa	279,100	5%
Brazil	276,700	5%
Namibia	261,000	5%
USA	207,400	4%
China	166,100	3%
Ukraine	119,600	2%
Uzbekistan	96,200	2%
Mongolia	55,700	1%
Jordan	33,800	1%
other	164,000	3%
World total	5,327,200	

- Rock and sediment studies
- Aerial surveys:
 - Satellites beams and bounce back
 - Radiometric using small planes and helicopters
 - Helicopters easier to maneuver
 - Altitudes of 200 to 3000 ft
 - Large Nal detectors (2x4x16 and larger)
 - HPGe detectors
 - Look for signals from Uranium daughters and K-40
 - K-40 at 1.46 MeV
 - Bi-214 at 1.76 MeV for Uranium
 - TI-208 at 2.61 MeV for Thorium
 - Rn as evidenced by Pb-214 gamma rays
 - Can detect concentrations as low as 0.2% U3O8

Gamma spectrum of Uranium and Thorium

- Surface surveys:
 - Simple GM counter
 - Nal or HPGe detectors
 - Look for K-40, Bi-214, Tl-208, Th-234, down to 50ppm
 - Can also use Kr-85 and Xe-133
- Radiochemistry of water samples:
 - Telltale signs of Uranium and other heavy metals
 - Can also use mass spectrometers or neutron activation techniques for sensitivities down to about 1ppm

Sh2A

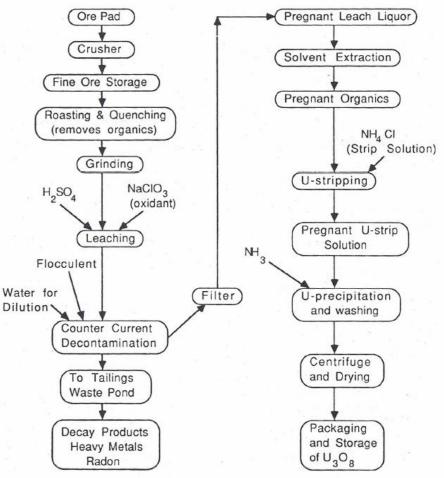

- Well logging:
 - To further explore and verify surface discoveries
 - Direct gamma counting:
 - Nal detectors
 - HPGe detectors
 - Delayed neutron counting
- Botanical method:
 - Selective concentration of certain elements in some plants with affinity to absorb some Uranium daughters

Uranium Mining Methods

- Open pit mining:
 - Remove top soil and replace later
 - Dig up the ore bed
- Underground mining:
 - Similar to coal mining, relatively lower environmental impact
 - Part of the mine left behind for support
 - More hazardous to miners
 - High concentration of radon gas

Solution (in Situ Leach) Mining

- Leaves the ore in the ground and recovers the uranium by dissolving and pumping the "pregnant" solution to the surface where the minerals can be recovered.
- In 2011, 45% of world uranium was mined using solution mining.


Solution (in Situ Leach) Mining

- Advantages:
 - No need for hauling of ore to mill
 - No need for grinding and milling operations
 - No need for large scale excavation
 - Lower costs
 - Risk reduction for workers
 - Small fraction of radioactivity reaches the surface
- Disadvantages:
 - Potential for ground water contamination
 - Lower recovery rate

Uranium Milling

- Sequence of physical and chemical treatment steps to extract the uranium from the ore
- Acid leach (sulfuric acid) or Alkali (bicarbonate) leach mills
- About 95% of the original uranium is recovered
- The end product is dried yellowcake powder (U₃0₈)

Uranium milling flow chart

